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or Polarization of EM Waves
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The sum of the E field vectors determines the sense of polarization

Polarization is the property of wave that can oscillate with more tharn one orientation. )A light wave that is
vibrating in more than one plane is referred to as unpolarized light. The process of fransforming unpolarized
light into polarized light i1s known as polarization of light.
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Linear polarization: When an ordinary (unpolarized) light is reflected from a polished surface or
transmission through certain materials, the electric fields vector oscillates along a straight line in one
plane, and the light is said to be linearly polarized. T

Circular polarization: The electric field of light consists of two linear components that are perpendicular
to each other, equal in amplitude, but have a phase difference of /2. The resulting electric field rotates
in a circle around the direction of propagation and, depending on the rotation direction, is called left- or
right-hand circularly polarized light.

Elliptical polarization: The electric field of light describes an ellipse. This results from the combination of
two linear components with differing amglijtu’d'es or a phase difference that is not rt/2.
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Polarization of EM Waves
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**TEM wave propagating harmonically in the z - direction
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***Equation of an elliptically polarized plane TEM wave




Linear Polarization
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1.) ¢ = xtmm, m =0,1,2,... = linearly polarized wave, linear polarization
The direction of E (i.e., the E plane) is fixed.
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2 D e, Elliptical Polarization
\$%ﬂu g

2 2
Y 2Acos£  2Bcos £ 2Asin£  2Bsin%
37 T I
Y= =73
Right-handed /< Left-handed 2) p= m%, m = %1, 43, ... = elliptical polarization with the ellipse’s main axes in z- and
rotation wt \rotation y-direction (see Fig. 4.3). ° _
@ : ( ) Jat D=2
By || ap on@®s S,
A > B # 3 sSin 9 = COS 9 9
A E, EN\® (E, E,\ al
A Wt W) 9 VA e
Wave is travelling toward A<B ( A * B ) * ( A B ) I: @ 2 ‘
viewer — out of paper. ZP( wqn zl‘l“’l
— J
2 2
Figure 4.3: Elliptical polarization & n ﬂ —1 ’X‘:I 2\1 J - l
A B — 1 ¢

AL

S

Acos(wt — k,2)
B cos(wt — k,z +

IS

left-hand circular polarization (LHCP): ¢ = 7
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Circular Polarization
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Figure 4.4: Circular polarization
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3.) p =mZ, m==%1,43,... and A = B = circular polarization
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Elliptical Polarization (RHEP)
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Figure 4.5: Elliptical polarization (RHEP) with A = B and ¢ = —45°

Please note that even if both magnitudes are equal (A = B), the polarization becomes elliptical if
angle ¢ is not equal £90°. Fig. 4.5 shows this clearly for a phase shift of ¢ = —45° and A = B,
the polarization is right-hand elliptical (RHEP).




Check Test!!!

Linear, Elliptical, and Circular Polarization
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Linear, Elliptical, and Circular Polarization
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Polarization of EM Waves
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Axial Ratio
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Figure 4.9: Polarization ellipse and axial ratio

* Axial Ratio (AR) 1s the ratio of the main axes Ea and Es of the non-
perfect (1.e., non-circular) polarization ellipse.

* Typically, the AR 1s given in dB.

* Typical AR values are in a range of 0dB and 6dB.

* A linear polarization the axial ratio becomes infinity.



Circular Polarization
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Sense of rotation is according to IEEE convention, .i.e., from the point of view of the wave’s source.
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Polarization of EM Waves
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NOTE: This figure depicts an example only, all polarizations can be reversed.
In either case, the antennas should be identical.

Wave propagation between two identical antennas is analogous to being

able to thread a nut from one bolt to an
identical opposite-facing bolt.



Polarization of EM Waves
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NOTE: This figure depicts an example only, all polarizations can be reversed.
In either case, the antennas should have opposite polarization.




Polarization of EM Waves
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NOTE: This figure depicts an example only, all polarizations can be reversed.
In either case, the antennas should be identical.




Polarization of EM Waves

Transmit
Antenna
Polarization

Table 1. Polarization Loss for Various Antenna Combinations

Receive Antenna
Polarization

Ratio of Power Received to Maximum Power

Theoretical

Practical Hom

Practical Spiral

Ratio in dB

as Ratio

Ratio in dB | as Ratio

Ratio in dB

as Ratio

Vertical

Vertical

Vertical

Vertical

Horizontal
Horizontal
Horizontal

Circular (right-hand)

Circular (right-hand)

Vertical

Slant (45° or 135°)

Horizontal

Circular (right-hand or left-hand)

Horizontal

Slant (45° or 135°)

Circular (right-hand or left-hand)

Circular (right-hand)

Circular (left-hand)
> or 135°

* Approximately the same as theoretical

0dB

-3dB
- dB
-3dB
0dB

-3dB
-3dB
0dB

- dB

N/A
N/A
N/A
.
N/A
N/A

N/A
N/A
N/A

N/A
N/A







4.4  Problem 4 LXT vty
Determine the polarization of the following plane waves. \\[‘r],(/
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||- E, = Egcos(wt+ kz) &, + Eysin(wt + k2) &, WV
E, = E, (gé(wt + kz) €, — Epsin(wt + kz) €,
Es = Egcos(wt+ kz) &, — 2Eysin(wt + kz — g) €y

b) It is given the magnetic field intensity H = —H) cos(wt — kz + 0) & + Hy cos(wt — k2) &,.
Show that the tip of the electric field vector may trace a line, a circle, or an ellipse over time
in a fixed plane z = const. Depict and rationalize your answers.

c) Show that a linearly polarized wave can be obtained as the superposition of two circularly
polarized waves rotating in opposite directions but at the same angular rate.
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4.4 Problem 4

Determine the polarization of the following plane waves.

E, = Egcos(wt+ kz) & + Eysin(wt + k2) &, ECB — A COS ((Ut _ kZZ)
||~ E, = Eycos(wt+ kz) &, — Egsin(wt + kz) €y

E; = Egcos(wt+ kz) é’m—2Eosin(wt+kz—§) €y E’U — B COS(Mt — kzz _|_ gp

b) It is given the magnetic field intensity H = —H) cos(wt — kz + 0) & + Hy cos(wt — k2) &,.
Show that the tip of the electric field vector may trace a line, a circle, or an ellipse over time
in a fixed plane z = const. Depict and rationalize your answers.

c) Show that a linearly polarized wave can be obtained as the superposition of two circularly
polarized waves rotating in opposite directions but at the same angular rate.
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4.4 Problem 4
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Determine the polarization of the following plane waves. x 9¢
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Ej cos(wt + kz) €, — 2Ey sin(wt + kz — g) €y

b) It is given the magnetic field intensity H = —H) cos(wt — kz + 0) & + Hy cos(wt — k2) &,.
Show that the tip of the electric field vector may trace a line, a circle, or an ellipse over time
in a fixed plane z = const. Depict and rationalize your answers.

c) Show that a linearly polarized wave can be obtained as the superposition of two circularly
polarized waves rotating in opposite directions but at the same angular rate.
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4.4 Problem 4

Determine the polarization of the following plane waves.

E, = Egcos(wt+ kz) & + Eysin(wt + k2) &,
E, = Eycos(wt+ kz) &, — Egsin(wt + kz) €y
||~ E, = E, cos(wt + kz) €, — 2Ey sin(wt + kz — %) €y

b) It is given the magnetic field intensity H = —H) cos(wt — kz + 0) & + Hy cos(wt — k2) &,.
Show that the tip of the electric field vector may trace a line, a circle, or an ellipse over time
in a fixed plane z = const. Depict and rationalize your answers.

c) Show that a linearly polarized wave can be obtained as the superposition of two circularly
polarized waves rotating in opposite directions but at the same angular rate.
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4.4 Problem 4

a) Determine the polarization of the following plane waves.

E, = Eycos(wt+ kz) €, + Eysin(wt + kz) €, E\x

E, = Eycos(wt+ kz) €, — Egsin(wt + kz) €,
E; = Eycos(wt+ kz) & — 2Egsin(wt + kz ;g)yl /6'
) b Wy
It is given the magnetic field intensity H = —H; cos(wt — kz J@e} + Hy cos(wt — kz) €.
Show that the tip of the electric field vector may trace a line, a circle, or an ellipse over time
-_—

in a fixed plane z = const. Depict and rationaliz€ your answers.
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c) Show that a linearly polarized wave can be obtained as the superposition of two circularly
polarized waves rotating in opposite directions but at the same angular rate.
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4.4 Problem 4

a) Determine the polarization of the following plane waves.

E, = Eycos(wt+ kz) €, + Eysin(wt + kz) €,
E, = Eycos(wt+ kz) & — Eysin(wt + k2) €y
Es = Egcos(wt+ kz) &, — 2Eysin(wt + kz — g) €y

It is given the magnetic field intensity H = —H) cos(wt — kz + 0) & + Ha cos(wt — k2) &,.
Show that the tip of the electric field vector may trace a line, a circle, or an ellipse over time
in a fixed plane z = const. Depict and rationalize your answers.

c) Show that a linearly polarized wave can be obtained as the superposition of two circularly
polarized waves rotating in opposite directions but at the same angular rate.
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4.4 Problem 4

a) Determine the polarization of the following plane waves.

E, = Eycos(wt+ kz) €, + Eysin(wt + kz) €,
E, = Eycos(wt+ kz) & — Eysin(wt + k2) €y
Es = Egcos(wt+ kz) &, — 2Eysin(wt + kz — %) €y

It is given the magnetic field intensity H = —H) cos(wt — kz + 0) & + Ha cos(wt — k2) &,.
Show that the tip of the electric field vector may trace a line, a circle, or an ellipse over time
in a fixed plane z = const. Depict and rationalize your answers.

c) Show that a linearly polarized wave can be obtained as the superposition of two circularly
polarized waves rotating in opposite directions but at the same angular rate.

IS
||

Acos(wt — k.2)
Beos(wt — k,z+ @

fes
I

.

4+ O <«—— linear (LP) @ o
\
- left-hand elliptical polarization,
T2 < > for p=m7/2and A=B it is
left-hand circular pol. (LHCP)
J
—+ 7T <«— linear (LP)
\
37 right-hand elliptical polarization,
5 > for ¢=23m/5 and A=B it is
right-hand circular pol. (RHCP)
J
—t17 <« linear (LP)
P \4

/W 4/»17 J&' = (%/”‘cn—e/ﬂéﬂ?‘ﬂ/:’/’?, (l’a-v.,&" ~, =4,

52: : cm(wz‘—/éz-f%—):-o«,&‘[wz‘“/éi‘)

A(z N (uf‘k?)
E"—&' — Ity 2wt —k2)
o

b=
E(wr=%

’/ H =4 D LHECP ceveelar yoot.)
L HEHILHEP (Llprical pot. )

4




4.4 Problem 4

a) Determine the polarization of the following plane waves.

E, = Eycos(wt+ kz) €, + Eysin(wt + kz) €,
E, = Eycos(wt+ kz) &, — Egsin(wt + kz) €y
E, = E, cos(wt + kz) €, — 2Ey sin(wt + kz — %) €y

b) It is given the magnetic field intensity H = —H) cos(wt — kz + 0) & + Hy cos(wt — k2) &,.
Show that the tip of the electric field vector may trace a line, a circle, or an ellipse over time
in a fixed plane z = const. Depict and rationalize your answers.

@Show that a linearly polarized wave can be obtained as the superposition of two circularly
pola@vaves rotating in opposite directions but at the same angular rate. -_—
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