# Lecture 5

Wave Equations, Solutions and Plane Waves

Nazmul Haque Turja

Research and Development Assistant, BUET

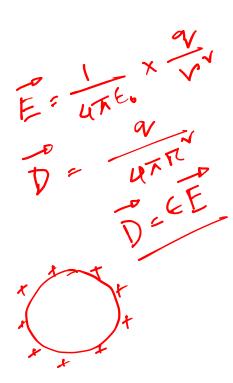
$$\operatorname{curl} \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

$$\operatorname{curl} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\operatorname{div} \vec{D} = \varrho$$

$$\operatorname{div} \vec{B} = 0$$

#### **Wave Equation:**



$$\underline{\operatorname{curl}\operatorname{curl}\vec{H}} = \underline{\sigma}\operatorname{curl}\vec{E} + \varepsilon\frac{\partial}{\partial t}\left(\operatorname{curl}\vec{E}\right)$$

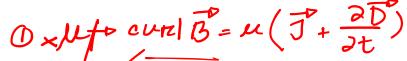
$$\operatorname{curl} \vec{E} = -\frac{\partial \vec{B}}{\partial t} - \vec{O}$$

$$\operatorname{curl} \operatorname{curl} \vec{H} = \operatorname{grad} \operatorname{div} \vec{H} - \Delta \vec{H}.$$

$$\operatorname{div} \vec{B} = 0 - \vec{O}$$

$$\operatorname{div} \vec{H} = 0$$

$$\Delta \vec{H} = \mu \sigma \frac{\partial \vec{H}}{\partial t} + \mu \varepsilon \frac{\partial^2 \vec{H}}{\partial t^2}$$



#### **Wave Equation:**

$$\operatorname{curl} \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} - \underline{0}$$

$$\operatorname{curl} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{D} = \varrho - 0$$

$$\begin{aligned} \operatorname{curl} \operatorname{curl} \vec{E} &= -\mu \frac{\partial}{\partial t} \left( \sigma \vec{E} + \varepsilon \frac{\partial \vec{E}}{\partial t} \right) \end{aligned} \qquad \text{curl} \operatorname{curl} \vec{E} &= \operatorname{grad} \operatorname{div} \vec{E} - \Delta \vec{E} \\ &= -\mu \sigma \frac{\partial \vec{E}}{\partial t} + \varepsilon \frac{\partial}{\partial t} \left( (-\mu) \frac{\partial \vec{E}}{\partial t} \right) \end{aligned} \qquad \text{curl} \operatorname{curl} \vec{E} &= \operatorname{grad} \operatorname{div} \vec{E} - \Delta \vec{E} \\ &= \operatorname{grad} \frac{\varrho}{\varepsilon} - \Delta \vec{E} \end{aligned}$$

$$= -\mu \sigma \frac{\partial \vec{E}}{\partial t} - \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2}$$

curl curl 
$$\vec{E} = \operatorname{grad}\operatorname{div}\vec{E} - \Delta\vec{E}$$

$$= \operatorname{grad}\frac{\varrho}{\varepsilon} - \Delta\vec{E}$$

Because of the homogeneity of the medium and of the charge density  $\varrho$ , the grad operation yields

zero

charge equal 
$$\operatorname{grad}_{\mathfrak{E}} \vec{0}$$

$$\Delta \vec{E} = \mu \sigma \frac{\partial \vec{E}}{\partial t} + \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2}$$



#### **Laplace Operator:**

lace Operator:
$$\Delta \vec{H} = \begin{pmatrix} \Delta H_{0} \\ \Delta H_{0} \\ \Delta H_{2} \end{pmatrix}$$

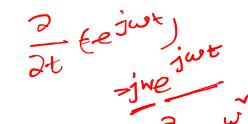
$$\Delta H_{0} = \begin{pmatrix} \partial^{2} H_{0} \\ \partial x^{2} \end{pmatrix} + \frac{\partial^{2} H_{0}}{\partial y^{2}} + \frac{\partial^{2} H_{0}}{\partial z^{2}}$$

$$\Delta \vec{H} = \begin{pmatrix} \partial^{2} H_{0} \\ \partial x^{2} \end{pmatrix} + \frac{\partial^{2} H_{0}}{\partial y^{2}} + \frac{\partial^{2} H_{0}}{\partial z^{2}}$$

$$\frac{\partial^{2} H_{0}}{\partial x^{2}} + \frac{\partial^{2} H_{0}}{\partial y^{2}} + \frac{\partial^{2} H_{0}}{\partial z^{2}}$$

$$\frac{\partial^{2} H_{0}}{\partial x^{2}} + \frac{\partial^{2} H_{0}}{\partial y^{2}} + \frac{\partial^{2} H_{0}}{\partial z^{2}}$$

### **Wave Equation in Complex Notation:**



Let us now consider harmonic fields and use complex notation with the general time dependence Then the rate of change equals a multiplication with  $j\omega$  meaning that the second

derivative wrt. time is

$$\Delta \vec{H} = \mu \sigma \frac{\partial \vec{H}}{\partial t} + \mu \varepsilon \frac{\partial^2 \vec{H}}{\partial t^2}$$

$$\frac{\partial \dots}{\partial t} \equiv -\omega^2$$

$$\Delta \vec{E} = \mu \sigma \frac{\partial \vec{E}}{\partial t} + \mu \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2}$$

$$\Delta \underline{\vec{H}} = (-\omega^2 \mu \varepsilon + j\omega \mu \sigma) \underline{\vec{H}}$$

$$= -\omega^2 \mu \varepsilon \left(1 - j\frac{\sigma}{\varepsilon \omega}\right) \underline{\vec{H}}$$

$$\Delta \underline{\vec{E}} = (-\omega^2 \mu \varepsilon + j\omega \mu \sigma) \underline{\vec{E}}$$
$$= -\omega^2 \mu \varepsilon \left(1 - j\frac{\sigma}{\varepsilon \omega}\right) \underline{\vec{E}}$$

By comparing these equations with the case of an insulator ( $\sigma = 0$ ),

$$\Delta \underline{\vec{H}} = -\omega^2 \mu \varepsilon \, \underline{\vec{H}} \quad \checkmark \quad$$

$$\Delta \underline{\vec{E}} = -\omega^2 \mu \varepsilon \underline{\vec{E}}$$

$$\varepsilon = \varepsilon \left( 1 - j \frac{\alpha}{\epsilon w} \right)$$

#### **Wave Equation in Complex Notation:**

$$\Delta \underline{\vec{H}} = -\omega^2 \mu \varepsilon \left(1 - j \frac{\sigma}{\varepsilon \omega}\right) \underline{\vec{H}}$$

$$\Delta \underline{\vec{H}} = -\omega^2 \mu \underline{\varepsilon} \, \underline{\vec{H}}$$

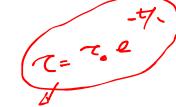
$$\Delta \underline{\vec{E}} = -\omega^2 \mu \underline{\varepsilon} \, \underline{\vec{E}}$$

$$\underline{\varepsilon} = \varepsilon \left(1 - j \frac{\sigma}{\varepsilon \omega}\right) \qquad \tan \delta = \frac{\sigma}{\omega \varepsilon} \qquad \text{with} \quad \varepsilon = \varepsilon_0$$

$$= \varepsilon \left(1 - j \frac{1}{\tau_{\text{relax}} \omega}\right) \qquad \text{Loss Tangent} \quad \text{(Dissipation Factor)}$$

$$= \varepsilon \cdot (1 - j \tan \delta) \qquad \text{Oracla Xation fine}$$

$$\tan(\delta) = \frac{\sigma}{\omega \varepsilon}$$
 with  $\varepsilon = \varepsilon_0 \varepsilon_\eta$ 



$$= \varepsilon \cdot (1 - j \tan \delta)$$

| Taconic High Performance Materials - Typical Values |                      |                                           |                                               |                                  |                                |                          |     |                             |                                  |      |    |     |                                                   |
|-----------------------------------------------------|----------------------|-------------------------------------------|-----------------------------------------------|----------------------------------|--------------------------------|--------------------------|-----|-----------------------------|----------------------------------|------|----|-----|---------------------------------------------------|
| Part #                                              | Composition          | Dk                                        | Df                                            | Volume<br>Resistivity<br>Mohm/cm | Surface<br>Resistivity<br>Mohm | Flex<br>Strength<br>kpsi |     | Moisture<br>Absorption<br>% | Thermal<br>Conductivity<br>W/M*K | CTE* |    | 2   | Peel Strength<br>lbs/in<br>Very Low<br>Profile Cu |
|                                                     |                      | $=\varepsilon_r$                          | $=$ tan $\delta$                              |                                  |                                | MD                       | CD  |                             |                                  | X    | у  | Z   | CV1                                               |
| TLY-5A                                              | PTFE - Glass         | 2.17 <sup>(a)</sup>                       | 0.0009 <sup>(a)</sup>                         | $10^{10}$                        | 109                            | 14                       | 13  | <0.02                       | 0.22                             | 20   | 20 | 280 | 12                                                |
| TLP-5                                               | PTFE - Glass         | 2.20 <sup>(a)</sup>                       | 0.0009 <sup>(a)</sup>                         | 10 <sup>7</sup>                  | 107                            | >12                      | >10 | <0.02                       | 0.22                             | 20   | 20 | 280 | 10                                                |
| TLY-5                                               | PTFE - Glass         | 2.20 <sup>(a)</sup>                       | 0.0009 <sup>(a)</sup>                         | 10 <sup>10</sup>                 | 108                            | 14                       | 13  | <0.02                       | 0.22                             | 20   | 20 | 280 | 12                                                |
| TLY-3                                               | PTFE - Glass         | 2.33 <sup>(a)</sup>                       | 0.0012 <sup>(a)</sup>                         | 10 <sup>10</sup>                 | 108                            | 14                       | 13  | <0.02                       | 0.22                             | 20   | 20 | 280 | 12                                                |
| TLX-0, 9, 8, 7, 6                                   | PTFE - Glass         | 2.45 - 2.65 <sup>(a)</sup>                | 0.0015 - 0.0021 <sup>(c)</sup>                | 10 <sup>10</sup>                 | 108                            | >23                      | >17 | <0.02                       | 0.22                             | 9    | 12 | 140 | 12                                                |
| TLA-6                                               | PTFE - Glass         | 2.65                                      | 0.0017                                        | 10 <sup>12</sup>                 | 1014                           | 13                       | 12  | 0.02                        | 0.19                             | 9    | 12 | 140 | >10                                               |
| TSM-26, 30                                          | PTFE Ceramic - Glass | 2.60 <sup>(c)</sup> , 3.00 <sup>(c)</sup> | 0.0014 <sup>(c)</sup> , 0.0013 <sup>(c)</sup> | 10 <sup>8</sup>                  | 107                            | >7                       | >6  | 0.03                        | 0.27                             | 23   | 28 | 78  | 8                                                 |
| fastFilm™27 (FF-27) <sup>∓</sup>                    | PTFE Ceramic - Film  | 2.70                                      | 0.0012                                        | 10 <sup>8</sup>                  | 108                            | 4                        | 4   | 0.03                        | 0.34                             | 29   | 28 | 112 | 16                                                |
| TLC-27, 30, 32, 338, 35                             | PTFE - Glass         | 2.75 - 3.50 <sup>(a)</sup>                | 0.0023 - 0.0037 <sup>(c)</sup>                | 10 <sup>8</sup>                  | 108                            | 24                       | 19  | <0.02                       | 0.24                             | 9    | 12 | 70  | 12                                                |
| TSM-DS                                              | PTFE Ceramic - Glass | 2.85 <sup>(a)</sup>                       | 0.0010 <sup>(a)</sup>                         | 10 <sup>8</sup>                  | 108                            | 15                       | 8   | 0.04                        | 0.45                             | 11   | 18 | 57  | 8                                                 |
| TLE-95                                              | PTFE - Glass         | 2.95 <sup>(a)</sup>                       | 0.0026 <sup>(a)</sup>                         | 10 <sup>9</sup>                  | 107                            | >24                      | >18 | <0.02                       | 0.28 <sup>(e)</sup>              | 9    | 12 | 70  | 12                                                |
| RF-30                                               | PTFE Ceramic - Glass | 3.00 <sup>(b)</sup>                       | 0.0014 <sup>(b)</sup>                         | 10 <sup>9</sup>                  | 108                            | 20                       | 16  | 0.02                        | 0.20                             | 11   | 21 | 208 | 10                                                |
| TSM-DS3                                             | PTFE Ceramic - Glass | 3.00 <sup>(a)</sup>                       | 0.0011 <sup>(a)</sup>                         | 10 <sup>8</sup>                  | 106                            | 12                       | 8   | 0.07                        | 0.65                             | 10   | 16 | 23  | 8                                                 |
| TRF-43, 45                                          | PTFE Ceramic - Glass | 4.30, 4.50                                | 0.0035                                        | 10 <sup>7</sup>                  | 107                            | 17                       | 15  | 0.06                        | 0.43                             | 9    | 9  | 40  | >8                                                |
| RF-60A                                              | PTFE Ceramic - Glass | 6.15 <sup>(d)</sup>                       | 0.0038 <sup>(a)</sup>                         | 108                              | 108                            | >18                      | >15 | 0.02                        | 0.40                             | 9    | 8  | 69  | 8                                                 |

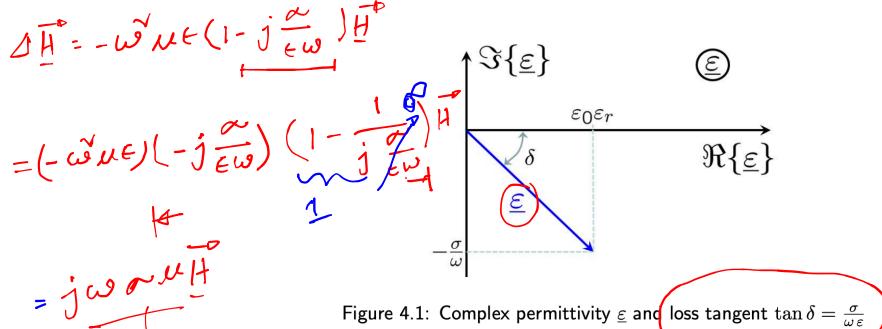


Figure 4.1: Complex permittivity  $\underline{\varepsilon}$  and loss tangent  $\tan \delta = \frac{\sigma}{\omega \, \varepsilon}$ 

For a good conducting material (i.e., metals, for example, silver, copper, gold, aluminium, brass, ..) we can neglect the real part of  $\underline{\varepsilon}$  up to highest millimeter wave frequencies (because  $\sigma \gg \omega \varepsilon$ ) and obtain

$$\Delta \underline{\vec{H}} = j\omega\mu\sigma\underline{\vec{H}} \qquad (4.25)$$

$$\Delta \underline{\vec{E}} = j\omega\mu\sigma\underline{\vec{E}} \qquad (4.26)$$

The same notation also holds for the current density  $(\underline{\vec{J}} = \sigma \underline{\vec{E}})$ :

$$\Delta \underline{\vec{J}} = j\omega\mu\sigma\underline{\vec{J}} \tag{4.27}$$

$$\Delta \underline{\vec{H}} = -\omega^2 \mu \underline{\varepsilon} \, \underline{\vec{H}}$$

$$\Delta \underline{\vec{E}} = -\omega^2 \mu \underline{\varepsilon} \, \underline{\vec{E}}$$

$$\underline{\varepsilon} \neq \varepsilon \left( 1 - j \frac{\sigma}{\varepsilon \omega} \right)$$

$$= \varepsilon \left( 1 - j \frac{1}{\tau_{\text{relax}} \omega} \right)$$

#### Solutions of Wave Equation

$$\Delta \vec{E} = \widehat{\mu \sigma} \frac{\partial \vec{E}}{\partial t} + \widehat{\mu \varepsilon} \frac{\partial^2 \vec{E}}{\partial t^2}$$

$$\frac{\partial^{2}E_{x}}{\partial x^{2}} + \frac{\partial^{2}E_{x}}{\partial y^{2}} + \frac{\partial^{2}E_{x}}{\partial z^{2}}}{\partial y^{2}} + \frac{\partial^{2}E_{y}}{\partial z^{2}} + \frac{\partial^{2}E_{y}}{\partial z^{2}} + \frac{\partial^{2}E_{y}}{\partial z^{2}} + \frac{\partial^{2}E_{z}}{\partial z^{2}} = \mu\sigma \begin{pmatrix} \frac{\partial E_{x}}{\partial t} \\ \frac{\partial E_{y}}{\partial t} \\ \frac{\partial E_{z}}{\partial t} \end{pmatrix} + \mu\varepsilon \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{y}}{\partial t^{2}} \\ \frac{\partial^{2}E_{z}}{\partial t^{2}} \end{pmatrix} = \mu\sigma \begin{pmatrix} \frac{\partial E_{x}}{\partial t} \\ \frac{\partial E_{y}}{\partial t} \\ \frac{\partial E_{z}}{\partial t} \end{pmatrix} + \mu\varepsilon \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{z}}{\partial t^{2}} \\ \frac{\partial^{2}E_{z}}{\partial t^{2}} \end{pmatrix} = \mu\sigma \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{z}}{\partial t^{2}} \end{pmatrix} + \mu\varepsilon \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{z}}{\partial t^{2}} \end{pmatrix} = \mu\sigma \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} + \mu\varepsilon \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} = \mu\sigma \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} + \mu\varepsilon \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} = \mu\sigma \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} + \mu\varepsilon \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} = \mu\sigma \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} + \mu\varepsilon \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} = \mu\sigma \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} + \mu\varepsilon \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} = \mu\sigma \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} + \mu\varepsilon \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} = \mu\sigma \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} + \mu\varepsilon \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} = \mu\sigma \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} + \mu\varepsilon \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} = \mu\sigma \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} + \mu\omega \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} = \mu\sigma \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} + \mu\omega \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} = \mu\sigma \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} + \mu\omega \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} = \mu\sigma \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} + \mu\omega \begin{pmatrix} \frac{\partial^{2}E_{x}}{\partial t^{2}} \\ \frac{\partial^{2}E_{x}}{\partial t^{2}} \end{pmatrix} + \mu\omega \begin{pmatrix} \frac{\partial^{2}E_{x}}{$$



For solving 
$$\frac{\partial^2 E_x}{\partial x^2} + \frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} = \mu \varepsilon \, \frac{\partial^2 E_x}{\partial t^2}$$

### d'Alembert:

$$E_x = f(\omega t) - \vec{k} \cdot \vec{r} + g(\omega t + \vec{k} \cdot \vec{r}) \qquad \qquad \begin{array}{c} -\sqrt{2} \times 5 \times 16 = 0 \\ \times = 0 \end{array}, \quad 0$$

#### **Wave Vector:**

$$\vec{k} = \begin{pmatrix} k_x \\ k_y \\ k_z \end{pmatrix}$$

$$k = \sqrt{k_x^2 + k_y^2 + k_z^2}$$

$$k = \omega \sqrt{\mu \varepsilon} = \frac{\omega}{c_0} \sqrt{\mu_r \varepsilon_r}$$

$$k = \omega \sqrt{\mu \varepsilon} = \frac{\omega}{c_0} \sqrt{\mu_r \varepsilon_r}$$

- In physics, a wave vector is a vector which helps describe a wave. Like any vector, it has a magnitude direction, both of which are important.
  - magnitude is either the wavenumber or angular wavenumber of the wave, and
  - its direction is ordinarily the direction of wave propagation.



# Wave propagation:

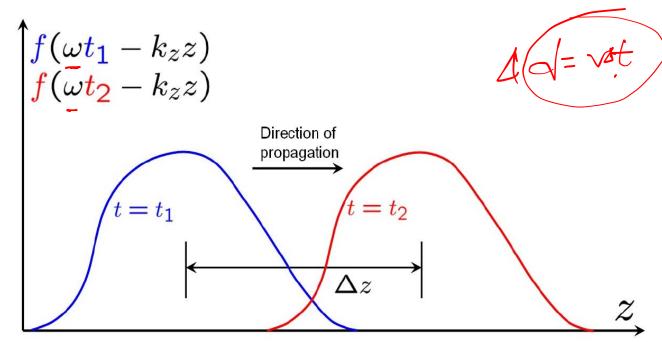
$$E_x = f(\omega t - \vec{k} \cdot \vec{r})$$

$$ec{k}\cdotec{r}=\left(egin{array}{c} k_x \ k_y \ k_z \end{array}
ight)\cdot\left(egin{array}{c} x \ y \ z \end{array}
ight)=k_xx+k_yy+k_zz$$

$$E_x = f(\omega t - k_x x - k_y y - k_z z)$$

If this wave travels into the positive z-direction, we get

$$E_x = f(\omega t - k_z z)$$
 with  $\vec{k} = \begin{pmatrix} 0 \\ 0 \\ k_z \end{pmatrix}$  and  $|\vec{k}| = k = k_z$ 



$$v_{ph}$$
  $v_{ph}$ 

$$\begin{pmatrix} \Delta z \end{pmatrix} = (t_2 - t_1) \underbrace{\begin{pmatrix} c_0 \\ \sqrt{\mu_r \varepsilon_r} \end{pmatrix}}_{v_{ph}}$$

$$= (t_2 - t_1) \underbrace{\begin{pmatrix} v_{ph} \\ v_{ph} \end{pmatrix}}_{v_{ph}}$$

$$v_{ph} = \underbrace{\begin{pmatrix} c_0 \\ \sqrt{v_{ph} \varepsilon_r} \end{pmatrix}}_{v_{ph}}$$

Therefore, in a medium, electromagnetic waves propagate slower than in vacuum.

#### Electromagnetic (lossy and lossless) Waves

#### **Wave Equation in Complex Notation:**

$$\Delta \underline{\vec{H}} = -\omega^2 \underline{\mu}\underline{\varepsilon}\underline{\vec{H}}$$

$$\Delta \underline{\vec{H}} = -\omega^2 \underline{\mu}\underline{\varepsilon}\underline{\vec{H}}$$

$$\Delta \underline{\vec{H}} = \begin{pmatrix} \frac{\partial^2 H_x}{\partial x^2} + \frac{\partial^2 H_x}{\partial y^2} + \frac{\partial^2 H_x}{\partial z^2} \\ \frac{\partial^2 H_y}{\partial x^2} + \frac{\partial^2 H_y}{\partial y^2} + \frac{\partial^2 H_y}{\partial z^2} \\ \frac{\partial^2 H_z}{\partial x^2} + \frac{\partial^2 H_z}{\partial y^2} + \frac{\partial^2 H_z}{\partial z^2} \end{pmatrix}$$

with

$$\underline{\varepsilon} = \varepsilon \left( 1 - j \frac{\sigma}{\varepsilon \omega} \right) \qquad \tan \delta = \frac{\sigma}{\omega \varepsilon} \qquad \text{with} \quad \varepsilon = \varepsilon_0 \varepsilon_r$$

$$= \varepsilon \left( 1 - j \frac{1}{\tau_{\text{relax}} \omega} \right) \qquad \text{(Dissipation Factor)}$$

$$= \varepsilon \cdot (1 - j \tan \delta)$$

#### Electromagnetic (lossy and lossless) Waves

$$\Delta \underline{\vec{E}} + \omega^2 \mu \underline{\varepsilon} \underline{\vec{E}} = 0$$
 Wave Equation

$$\begin{split} \vec{E}(x,y,z,t) &= \Re\{\underline{\vec{E}}_0(x,y,z)\,\mathrm{e}^{\,j(\omega t - \underline{\vec{k}}\,\cdot\,\vec{r})}\}\\ \underline{\vec{E}}(x,y,z) &= \underline{\vec{E}}_0(x,y,z)\,\mathrm{e}^{\,-j\underline{\vec{k}}\,\cdot\,\vec{r}}\,[\,\omega_{\mathrm{i}}\text{thout considering time dependency}] \end{split}$$

$$\frac{D}{(x,y,z)} - \underline{D}_0(x,y,z) \in \mathcal{L}$$
 time the complex wave vector  $\underline{\vec{k}} = \begin{pmatrix} \underline{k}_x \\ \underline{k}_y \\ \underline{k}_z \end{pmatrix}$  complex  $\underline{k} = |\underline{\vec{k}}|$  wave  $\underline{k} = \omega \sqrt{\mu \varepsilon} \omega$  
$$= \omega \sqrt{\mu \varepsilon} \sqrt{(1-j\tan\delta)}$$

Insulator:  $\sigma = 0$ 

$$k_{ ext{insulator}} = \omega \sqrt{\mu \varepsilon}$$

$$= \frac{\omega}{c_0} \sqrt{\mu_r \varepsilon_r}$$

$$= \frac{\omega}{v_0} \sqrt{v_0 \varepsilon_r}$$

$$\underline{k} = \omega \sqrt{\mu \varepsilon \left(1 - j \frac{\sigma}{\varepsilon \omega}\right)}$$

#### Good electric conductor: $\sigma \gg \varepsilon \omega$

But for a **good electric conductor** ( $\sigma \gg \varepsilon \omega$ ) the wave number becomes

and with 
$$\sqrt{-j}=(1-j)/\sqrt{2}$$
 we get

$$\underline{\kappa}_{\text{conductor}} = \sqrt{-j\omega\mu\delta}$$

$$\underline{k}_{\mathrm{conductor}} = (1-j)\sqrt{\frac{\omega\mu\sigma}{2}} \quad \left(=\underline{k'}-\underline{j}\underline{k''}\right)$$

with the phase constant k'

$$k' = \sqrt{rac{\omega\mu\sigma}{2}}$$

and the so-called damping constant k'' (here being equal to k')

$$k'' = \sqrt{\frac{\omega\mu\sigma}{2}}$$

$$\underline{k} = \omega \sqrt{\mu \varepsilon \left(1 - j \frac{\sigma}{\varepsilon \omega}\right)}$$

$$= \omega \sqrt{ju + \frac{\alpha}{\epsilon w}} \left(1 - \frac{1}{j \ell w}\right)$$

$$= \sqrt{-jue \times \frac{2}{ew} \times w^{2}}$$

#### Good electric conductor: $\sigma\gg\varepsilon\omega$



with the phase constant k'

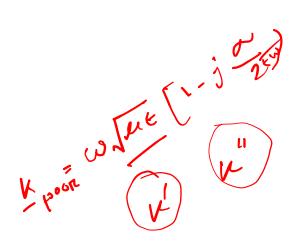
$$k' = \sqrt{rac{\omega\mu\sigma}{2}}$$

and the so-called damping constant k'' (here being equal to k')

$$k'' = \sqrt{\frac{\omega\mu\sigma}{2}}$$

$$\underline{\vec{E}}(x,y,z) = \underline{\vec{E}}_0(x,y,z) \, \mathrm{e}^{-j(1-j)\sqrt{\frac{\omega\mu\sigma}{2}}\vec{n}\cdot\vec{r}} \\ = \underline{\vec{E}}_0(x,y,z) \, \underline{\mathrm{e}}^{-\frac{1}{\delta_s}\vec{n}\cdot\vec{r}} \, \underline{\mathrm{e}}^{-j\frac{1}{\delta_s}\vec{n}\cdot\vec{r}} \\ = \underline{\vec{E}}_0(x,y,z) \, \underline{\mathrm{e}}^{-\frac{1}{\delta_s}\vec{n}\cdot\vec{r}} \, \underline{\mathrm{e}}^{-j\frac{1}{\delta_s}\vec{n}\cdot\vec{r}}$$

#### Poor electric conductor:



$$egin{array}{lcl} \underline{k}_{\, ext{poor cond.}} &=& \omega \sqrt{\mu arepsilon} \left(1-jrac{\sigma}{arepsilon \omega}
ight) \\ &=& \omega \sqrt{\mu arepsilon} \sqrt{1-jrac{\sigma}{arepsilon \omega}} \end{array}$$
 $&=& \omega \sqrt{\mu arepsilon} \sqrt{1-j an\delta}$ 
 $&=& \omega \sqrt{\mu arepsilon} \sqrt{1-j an\delta}$ 
 $&=& \sqrt{1-jx} pprox 1-jrac{x}{2} \quad ext{for } |x| \ll 1$ 

$$(1-2)$$
 $\sim 1-x(-2)$ 
 $\sim 1+2x$ 
 $(1-jx)^{1/2}$ 
 $= 1-jx \times \frac{1}{2}$ 

we get

$$\underline{k}_{ ext{ poor cond.}} pprox \omega \sqrt{\mu arepsilon} - j rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} \quad \left(= k' - j k'' 
ight)$$

with the phase constant k'

$$k' = \omega \sqrt{\mu \varepsilon}$$

and the damping constant k''

$$k'' = \frac{\sigma}{2} \sqrt{\frac{\mu}{arepsilon}}$$

#### Poor electric conductor:

we get

$$\underline{k}_{ ext{ poor cond.}} pprox \omega \sqrt{\mu arepsilon} - j rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} \quad \left(= k' - j k'' 
ight)$$

with the phase constant k'

and the damping constant k''

$$k' = \omega \sqrt{\mu \varepsilon}$$

$$k'' = \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}$$

$$\begin{array}{lcl} \underline{\vec{E}}(x,y,z) & = & \underline{\vec{E}}_0(x,y,z) \, \mathrm{e}^{-j\left(\omega\sqrt{\mu\varepsilon}-j\frac{\sigma}{2}\sqrt{\frac{\mu}{\varepsilon}}\right)\vec{n}\cdot\vec{r}} \\ & = & \underline{\vec{E}}_0(x,y,z) \, \underbrace{\mathrm{e}^{-\frac{\sigma}{2}\sqrt{\frac{\mu}{\varepsilon}}\vec{n}\cdot\vec{r}}}_{\text{damping factor}} \, \underbrace{\mathrm{e}^{-j\omega\sqrt{\mu\varepsilon}\,\vec{n}\cdot\vec{r}}}_{\text{phase factor}} \end{array}$$

**Skin Depths:** Skin effect is the tendency of an alternating electric current to become distributed within a conductor such that the current density is largest near the surface of the conductor and decreases exponentially with greater depths in the conductor.



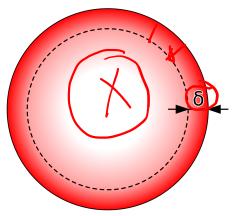
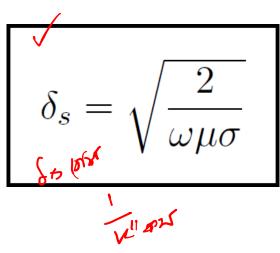


Figure: Skin Depth



$$\delta_s = \frac{2}{\sigma} \sqrt{\frac{\varepsilon}{\mu}}$$

# Good electric conductor (e.g., copper)

$$\delta_s({
m copper}) pprox rac{66.1 \, \mu {
m m}}{\sqrt{f[{
m MHz}]}}$$

#### Poor electric conductor

Example: The skin depth of copper with  $\sigma \approx 56 \cdot 10^6 \, \mathrm{S/m}$  is

$$\delta_s(\mathsf{copper}) pprox rac{67\,\mu\mathrm{m}}{\sqrt{f[\mathrm{MHz}]}}$$

This yields a skin depth of  $67\,\mu m$  at  $1\,MHz$ ,  $6.7\,\mu m$  at  $100\,MHz$  and  $0.67\,\mu m$  at  $10\,GHz$ . At  $50\,Hz$  we get a skin depth of  $9.5\,mm$ .