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mind that eq. (5.59) is based on the assumption t region 2 to region

Dln = D2n (5.60)

Thus the normal component of D is continuous across the interface; that is, D, undergoes
no change at the boundary. Since D = £E, eq. (5.60) can be written as

(b) &E,, = &k, (5.61)
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Electric Boundary Conditions(Conductor-Dielectric)
D-dS = Qe
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because D = €E = 0 inside the conductor. Equation (5.68) may be written as
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What is a perfect conductor? L

= 28 A

Thus under static conditions, the following conclusions can be made about a perfect
conductor:
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No electric field may exist within a conductor; that is, considering our conclusion

in Section 5.4, jov ) o\l
oy 7
<N

V p,=0, E=0 (5.70)
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Since E = —VV = 0, there can be no potential difference between any two points
in the conductor; that is, a conductor is an equipotential body.

An electric field E must be external to the conductor and must be normal to its
surface; that is, -

% D,=¢eE =0, D,=c¢gE, 2@ (5.71)




Maxwell’s Equations

Boundary conditions at a perfect electric conductor:
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PRACTICE EXERCISE 5.9 & z |

/

A homogeneous dielectric (g, = 2.5) fills region 1 (x < 0) while region 2 (x > 0) is PZ't
free space. — —_ qu//\ - A
(a) If D, = 12a, — 10a, + 4a,nC/m? find D, and 6,. ;y_]g 2 ’\//4\ 8= D
(b) If E, = 12V/m and 6, = 60° find E, and 6,. Take 6, and 0, as defined in q { 5 YRS

Example 5.9. oL

D, (-4 +(16)
tanf, = —% = = 0359 — - °
v\ 2 Dg,, 12 \ - 0 2 19.75
o
. XA
P.E. 5.9 (a) Since aq,=a,, Ty« 7P 2 3
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Dln = Izax, D” = -Ioax +4a:, Dln = lzax
v v w
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e,D /
Ey=E, ——> D,=—"t_ 5(-100.‘, +4a.)=-4a, +16a.

= ° g v
D, = D,,+ D, = -12a, - 4a,+ 16a, nC/m’.
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PRACTICE EXERCISE 5.9

4/ c6 6 LO
A homogeneous dielectric (g, = 2.5) fills region 1 (x < 0) while region 2 (x > 0) is

free space.

(a) If D, = 12a, — 10a, + 4a,nC/m? find D, and 6,.

(b) If E, =12V/m and 6, = 60°, find E, and 6,. Take 6, and 6, as defined in ) L“
Example 5.9. @ (2%

5)-
//
Din ? bon
E\ €, / 0 .
@E,, = E,, = E,sin®, = 12sin60° = 10.392 Epm= . Ean = BIZcost =24 BT c
E, rl : € Lin
E.’t
E, =\E, .E,’ =1067
\ % €, 2.5 )
> tanf , = - an82=-1—tan60 =433 —> 0,=77"
E

Note that 6, >0,.



3.3 Problem 3 |2 DZF

The three dimensional space is split into two regions filled with different materials (see Fig. 3.3.2).

The electric vector field El and the magnetic vector field I-_fl, in region 1 (see Fig.3.3.2), are given as
E) = (2.08, + 3.0&,) V/m H, = (0.1, + 0.2¢,) A/m

For sub-problems a) and b) there are no surface charges g on the interface.

a) Find the electric vector field E, in region 2 so that the boundary conditions at the interface
are fulfilled.

b) Find the magnetic induction Ez in region 2 so that the boundary conditions at the interface
are fulfilled.

c) Now the medium in region 2 is replaced by an ideal conductor with conductivity of o5 — oo
while all other parameters remain the same. Determine the surface charge density ggs on the
interface and determine the surface current density Js.
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3.3 Problem 3

The three dimensional space is split into two regions filled with different materials (see Fig.3.3.2).
The electric vector field E; and the magnetic vector field Hi, in region 1 (see Fig.3.3.2), are given as

Ey = (2.0, + 3.0¢.) V/m Hy = (0.1¢, +0.2¢.) A/m ' > E /’ -1 7
For sub-problems a) and b) tWe interface. 22‘4«, g\ 4 oo
a) Find the electric vector field E5 in region 2 so that the boundary conditions at the interface 3
are fulfilled. ’
. - . = . . . = - -~ / \ / /\
b) Find the magnetic induction B; in region 2 so that the boundary conditions at the interface IE i =m. * E - 4 / 1 \ / ¢
are fulfilled. A 2 =4 7 IV (14 | 2])¥Y =2 v 7
c) Now the medium in region 2 is replaced by an ideal conductor with conductivity of o5 — oo . 4 \ 0 P 4 \ 2 / M ]fl’ M
while all other parameters remain the same. Determige the surface charge density pg on the g (o 2\ \ S
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Magnet}g Boundary Conditions .
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(H, _/Hz) X a,, {K (8.45)
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H2,tan — Hl,tan = Jg X 112
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PRACTICE EXERCISE 8.9

A unit normal vector from region 2 (w = 2u,) to region 1 (u =

(6a, + 2a, — 3a,)/7.IfH, = 10a, + a, + 12a, A/mandH, = H,a, —

determine /\-’@\/ 'f‘

(a) H,,
(b) The surface current density K on the interface
(c) The angles B, and B, make with the normal to the interface

(b) /l/k =,(Hl ‘Flz)xanlz =a,, x(ﬁl *ﬁz)

—
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Gy < 1-112) - 35/ -5,9)

)6 2 -3 g
71%% 6 8
K =4.86a, —8.64d, +3.954, A/m

e

“‘o) is a4, =
/a,/ +4a, A/m,

(c)

normal to the interface.

¢ &

or uH,ea,, =u,H,ea,

21

(60 +2 - 36) (6H, +10-12)
0 = 2#() .
7 7
35=6H,,
H, =5.833

Since B =uf ¢ B and H, are parallel, i.e. they make the same angle with the

cos, = 1 2% _ 26 =0.2373
A A, 74100+1+144 _
6, =76.27°
cosf, = —2 ® 4, 13 =0.2144

6, =77.62°

A 75833 +25+16



3.3 Problem 3 i # 5

The three dimensional space is split into two regions filled with different materials (see Fig. 3.3.2).

The electric vector field El and the magnetic vector field ﬁl, in region 1 (see Fig.3.3.2), are given as -
By = (2.08, + 3.08,) V/m Hy = (0.16, + 0.2¢8,) A/m w L
/g tz@‘

For sub-problems a) and b) there are no surface charges g on the interface.
a) Find the electric vector field E, in region 2 so that the boundary conditions at the interface
are fulfilled.
b) Find the magnetic induction B; in region 2 so that the boundary conditions at the interface \
are fulfilled. 4

c) Now the medium in region 2 is replaced by an ideal conductor with conductivity of o5 — oo \)'N
while all other parameters remain the same. Determine the surface charge density ggs on the
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interface and determine the surface current density fs. ~
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3.3 Problem 3
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The three dimensional space is split into two regions filled with different materials (see Fig.3.3.2). Vf‘;
The electric vector field E; and the magnetic vector field Hi, in region 1 (see Fig.3.3.2), are given as /V

E) = (2.08, 4+ 3.0¢,) V/m H, = (0.1, + 0.2¢,) A/m

For sub-problems a) and b) there are no surface charges g on the interface.

a) Find the electric vector field Es in region 2 so that the boundary conditions at the interface
are fulfilled.

b) Find the magnetic induction §2 in region 2 so that the boundary conditions at the interfacg
are fulfilled.

c) Now the medium in region 2 is replaced by an ideal conductor with conductivity of go — oo
while all other parameters remain the same. Determine the surface charge density/oson the

interface and determine the surface current density fs.
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Maxwell’s Equations

Boundary conditions at a perfect electric conductor:
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Maxwell’s Equations

Boundary conditions at a perfect electric conductor:
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3.5  Problem 5 Freblow 3.5 s @
V.

Two very large metallic plates with an area A are placed next to each other in a distance d (see : ‘ 3 ,£4 . a = C V = C -
Fig.3.5.4). .

. | | . . e : ‘ V\-a & . / V .
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| | L. l» — #.D a4 = /fdy —
=y £ .
Figure 3.5.4 (v A D Vv »
Derive the capacitance C' between the plates. /4 /} 5 //d” i D W,{“‘,L
(& A i

Hint: Assume that one plate carries positive and the other plate the same amount of negative charges. éd [lo”’%(‘“ﬂ) Ly Yaséon, e /’é'&

Additionally assume a pure homogeneous field (because the plates are very large).
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