Lecture 3

Continuity Theorem, Maxwell's 4th Equations, Poynting Vector

Nazmul Haque Turja

Research and Development Assistant, BUET

2.3 **Problem 3**

The vector field

$$\vec{F} = \left(egin{array}{c} ax^2 \\ byz \\ x \end{array}
ight)$$

is given in Cartesian coordinates with the constants a and b.

- a) Determine the divergence of the vector field \vec{F} .
- b) Verify Gauss' theorem

$$\iiint\limits_V \operatorname{div} \vec{F} \, \mathrm{d}V = \oiint\limits_A \vec{F} \cdot \mathrm{d}\vec{A}$$

for a cube which fills the space between the points (0,0,0) and (1,1,1).

$$2.3$$
a) $\nabla \cdot F = \frac{\partial}{\partial x}(F_x) + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$

$$= 2ax + bz + 0$$
b) L.H.S.= $\iiint (2ax+bz) dx dy dz$

$$= \iiint (2ax+bz) dy dz$$

$$= \iiint (a+bz) dy dz$$

$$= \iint (a+bz) dz = [az+bz] dz$$

$$= \lim_{x \to a} (a+bz) dz = [az+bz] dz$$

$$= \lim_{x \to a} (a+bz) dz = [az+bz] dz$$

$$= \lim_{x \to a} (a+bz) dz = [az+bz] dz$$

$$= \lim_{x \to a} (a+bz) dz = [az+bz] dz$$

2.3 Problem 3

The vector field

$$ec{F} = \left(egin{array}{c} ax^2 \ byz \ x \end{array}
ight)$$

is given in Cartesian coordinates with the constants a and b.

- a) Determine the divergence of the vector field \vec{F} .
- b) Verify Gauss' theorem

$$\iiint\limits_V \operatorname{div} \vec{F} \, \mathrm{d}V = \iint\limits_A \vec{F} \cdot \mathrm{d}\vec{A}$$

for a cube which fills the space between the points (0,0,0) and (1,1,1).

R.H.s. =
$$f$$
 F. dA

Total 6 sureface in the cubes \Rightarrow

Forz 2 XY planes

() $\int \int (ax^{\nu}\hat{i} + byz\hat{j} + x\hat{k}) \cdot (dzdy\hat{k})$
 $= \int xdxdy$
 $= \int xdxdy$
 $= \int [x^{\nu}] dy$
 $= \int (ax^{\nu}i + byz\hat{j} + x\hat{k}) \cdot [dx \cdot dy(-\hat{k})]$
 $= -\int xdxdy$
 $= -\int xdxdy$

ENNOVARE: $x=0$

2.3 Problem 3

The vector field

$$ec{F} = \left(egin{array}{c} ax^2 \\ byz \\ x \end{array}
ight)$$

is given in Cartesian coordinates with the constants a and b.

- a) Determine the divergence of the vector field \vec{F} .
- b) Verify Gauss' theorem

$$\iiint\limits_V \operatorname{div} \vec{F} \, \mathrm{d}V = \oiint\limits_A \vec{F} \cdot \mathrm{d}\vec{A}$$

for a cube which fills the space between the points (0,0,0) and (1,1,1).

 $(-e_{x})$ $(-e_{x})$ $(-e_{x})$ $(-e_{x})$ $(-e_{x})$

For XZ plane

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$=$$

Previous Day's Equations

TABLE 9.1 Generalized Forms of Maxwell's Equations

Differential Form	Integral Form	Remarks
$ abla \cdot \mathbf{D} = ho_ u$	$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{\nu} \rho_{\nu} d\nu$	Gauss's law
$\nabla \cdot \mathbf{B} = 0$	$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$	Nonexistence of isolated magnetic charge*
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\oint_{L} \mathbf{E} \cdot d1 = -\frac{\partial}{\partial t} \int_{S} \mathbf{B} \cdot d\mathbf{S}$	Faraday's law
$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	$\oint_{L} \mathbf{H} \cdot d1 = \int_{S} \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right) \cdot d\mathbf{S}$	Ampère's circuit law

^{*}This is also referred to as Gauss's law for magnetic fields.

Continuity Equation

Continuity Equation: When a fluid is in motion, it must move in such a way that mass is conserved.

Correponds to Kirchhoff's Current Law (KCL):

From the principle of charge conservation, the time rate of decrease of charge within a given volume must be equal to the net outward current flow through the surface of the volume. Thus current I_{out} coming out of the closed surface is

$$Q_{\text{in}} = \oint_{S} \mathbf{J} \cdot d\mathbf{S} = \frac{-dQ_{\text{in}}}{dt}$$
where Q_{in} is the total charge enclosed by the closed surface. Invoking the divergence

theorem, we write

$$\oint_{S} \mathbf{J} \cdot d\mathbf{S} = \int_{v} \nabla \cdot \mathbf{J} \, dv \tag{5.41}$$

But

$$\frac{-dQ_{\rm in}}{dt} = -\frac{d}{dt} \int_{\nu} \rho_{\nu} \, d\nu = -\int_{\nu} \frac{\partial \rho_{\nu}}{\partial t} \, d\nu \tag{5.42}$$

Substituting eqs. (5.41) and (5.42) into eq. (5.40) gives

$$-I_1 + I_2 + I_3 = 0$$
$$I_1 = I_2 + I_3$$

$$\int_{\nu} \nabla \cdot \mathbf{J} d\nu = \int_{\nu} \left(\frac{\partial \rho_{\nu}}{\partial t} \right) d\nu$$

$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t} \tag{5.43}$$

Ampere's Law

Ampère's circuital law relates the integrated magnetic field around a closed loop is proportionate to the electric current passing through the loop.

$$I_{enc} = \oint \mathbf{H} \cdot \mathbf{dL} = \int_{S} (\nabla \times \mathbf{H}) \cdot d\mathbf{S}$$

$$I_{enc} = \int_{S} \mathbf{J} \cdot \mathbf{dS}$$

$$\begin{array}{c|c}
\hline
A & \\
A$$

$$\int_{S} (\nabla \times \mathbf{H}) \cdot d\mathbf{S} = \int_{S} \mathbf{J} \cdot d\mathbf{S}$$

$$\Rightarrow \nabla \times \mathbf{H} = \mathbf{J}$$

02

Maxwell's Fourth Equation (Toughest One)

$$\nabla \times \mathbf{H} = \mathbf{J} \tag{9.17}$$

But the divergence of the curl of any vector field is identically zero (see Example 3.10). Hence,

$$\nabla \cdot (\nabla \times \mathbf{H}) = 0 = \nabla \cdot \mathbf{J} \tag{9.18}$$

The continuity of current in eq. (5.43), however, requires that

$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho_{\nu}}{\partial t} \neq 0 \qquad (9.19)$$

Thus eqs. (9.18) and (9.19) are obviously incompatible for time-varying conditions. We must modify eq. (9.17) to agree with eq. (9.19). To do this, we add a term to eq. (9.17) so that it becomes

$$\nabla \times \mathbf{H} = \mathbf{J} + \mathbf{J}_d \tag{9.20}$$

where J_d is to be determined and defined. Again, the divergence of the curl of any vector is zero. Hence:

where J_d is to be determined and defined. Again, the divergence of the curl of any vector is zero. Hence:

$$\nabla \cdot (\nabla \times \mathbf{H}) = 0 = \nabla \cdot \mathbf{J} + \nabla \cdot \mathbf{J}_d \tag{9.21}$$

In order for eq. (9.21) to agree with eq. (9.19),

$$\nabla \cdot \mathbf{J}_{d} = -\nabla \cdot \mathbf{J} = \frac{\partial \boldsymbol{\rho}_{v}}{\partial t} = \frac{\partial}{\partial t} (\nabla \cdot \mathbf{D}) = \nabla \cdot \frac{\partial \mathbf{D}}{\partial t}$$
(9.22a)

or

$$\mathbf{J}_{d} = \frac{\partial \mathbf{D}}{\partial t}$$
 (9.22b)

Substituting eq. (9.22b) into eq. (9.20) results in

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$
 (9.23)

This is Maxwell's equation (based on Ampère's circuit law) for a time-verying field. The term $J_d = \partial D/\partial t$ is known as displacement current density and J is the conduction current

Displacement Current Density: Displacement current density is the quantity $\partial D/\partial t$ appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field.

PRACTICE EXERCISE 9.4

In free space, $\mathbf{E} = 20 \cos(\omega t - 50x) \mathbf{a}_y \mathbf{V}/\mathbf{m}$. Calculate

(a)
$$J_d$$

=
$$\epsilon_0 \frac{1}{2}$$

= $\epsilon_0 \frac{1}{2} \times 20 \times 1) \times \sin(\omega t - 50 \times) \hat{\alpha} y$
= $\epsilon_0 \frac{1}{2} \times 20 \times 1) \times \sin(\omega t - 50 \times) \hat{\alpha} y = 4 m^{\gamma}$
= $-20 \omega \epsilon_0 \sin(\omega t - 50 \times) \hat{\alpha} y = 4 m^{\gamma}$

$$\nabla \times \vec{E} = -\mu_o \frac{\partial \vec{H}}{\partial t} \rightarrow -\frac{\partial \vec{E}_x}{\partial x} \vec{a}_z = 0.4 \mu_o \vec{w} \varepsilon_o \sin(wt - 50x) \vec{a}_z$$

いせ-202-50%

$$1000 = 0.4 \mu_o \varepsilon_o w^2 = 0.4 \frac{\mu}{c_x} \omega$$
or w = 1.5 x 10¹⁰ rad/s

$$4\mu_o \tilde{w} \varepsilon_o \sin(wt - 50x) \tilde{a}_z$$

$$\Rightarrow \omega = \sqrt{\frac{1000 \times c^3}{0.10}}$$

$$\frac{1}{2} \times \frac{1}{2} = \frac{1}$$

3.1 @ curl
$$\overrightarrow{H} = \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t}$$

$$\iint (\text{Curl }\overrightarrow{H}) \cdot dA = \iint (\overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t}) \cdot d\overrightarrow{A}$$

$$\oint_L H \cdot dL = \iint (\overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t}) \cdot d\overrightarrow{A}$$
Stokes theorem A

$$\iint (\text{Curl }\overrightarrow{E}) \cdot dA = -\frac{\partial}{\partial t} \iint \overrightarrow{B} \cdot d\overrightarrow{A}$$

$$\oint_L \overrightarrow{E} \cdot dL = -\frac{\partial}{\partial t} \iint \overrightarrow{B} \cdot d\overrightarrow{A}$$

$$\oint_L \overrightarrow{E} \cdot dL = -\frac{\partial}{\partial t} \iint \overrightarrow{B} \cdot d\overrightarrow{A}$$

3.1 Problem 1

Use Gauss' and Stokes' theorems to transform the Maxwell equations from differential to integral notation.

$$\mathrm{curl} \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$
 $\mathrm{curl} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
 $\mathrm{div} \vec{D} = \varrho$
 $\mathrm{div} \vec{B} = 0$

A.dr= MAXAD @ div Do dv= Mgdv

A.dr= MAD.dA = Q N

A.dr= A

3.2 Problem 2

According to Faraday's law of electromagnetic induction, a time varying magnetic flux ψ_m penetrating a loop induces an electromotive force (emf) noted as voltage v(t) such that

Figure 3.2.1

 $\vec{\mathbf{B}}_{ ext{(decreasing)}}$

- a) Give Faraday's law in point form.
- b) Express eq. (3.2.1) in integral form, in terms of \vec{E} and \vec{B} fields.
- c) Determine the polarities of terminals a and b in the loop shown in Fig. 3.2.1. The \vec{B} field shall be continuously decreasing over time.

Problem 3.2

Solve
$$V(t) = -\frac{dV_m}{dt}$$
 $V(t) = -\frac{dV_m}{dt}$
 $V(t) = \int_{AB}^{B} \cdot ds$
 $V(t) = \int_{AB}^{A} \cdot ds$

3.2 Problem 2

According to Faraday's law of electromagnetic induction, a time varying magnetic flux ψ_m penetrating a loop induces an electromotive force (emf) noted as voltage v(t) such that

$$v(t) = -\frac{d\psi_m}{dt} \tag{3.2.1}$$

- a) Give Faraday's law in point form.
- b) Express eq. (3.2.1) in integral form, in terms of \vec{E} and \vec{B} fields.
- c) Determine the polarities of terminals a and b in the loop shown in Fig. 3.2.1. The \vec{B} field shall be continuously decreasing over time.

$$\oint \vec{E} \cdot \vec{ds} = -\frac{\partial}{\partial t} \iint \vec{B} \cdot \vec{dx}$$
(-)
(-)

and dA are right -handed oriented. 2- here, Band al are in parallel. Then, because B itself is decreasing, B. dA is decreasing over time, Therefore, the rate of hange of SIB-dA is negative. Together with the minus sign in Faraday's Law the integral SE'd's in positive, if we integrate from terminal b to reminal a. => b > 0.

Poynting Theorem

Poynting's theorem states that the net power flowing out of a given volume v is equal to the time rate of decrease in the energy stored within v minus the ohmic losses.

FIGURE 10.11 Illustration of power

4 Pout

 $\oint_{S} (\mathbf{E} \times \mathbf{H}) \cdot d\mathbf{S} = \left(-\frac{\partial}{\partial t} \int_{v} \left[\frac{1}{2} \varepsilon E^{2} + \frac{1}{2} \mu H^{2} \right] dv - \int_{v} \sigma E^{2} dv \right)$ total power rate of decrease in ohmic power leaving the volume = energy stored in electric - dissipated and magnetic fields

Poynting's Theorem:

HF

Power dissipation into heat

Energy of the Magnetic Field

Complex Numbers and Conjugate Complex

Poynting's Theorem:

$$\iint\limits_{A} \left(\vec{E} \times \vec{H} \right) \cdot d\vec{A} + P_V = -\frac{\partial}{\partial t} \left(W_{\rm el} + W_{\rm magn} \right)$$
 Energy flow

Poynting vector \vec{S} :

$$\vec{S} = \vec{E} \times \vec{H}$$

5 m

Poynting vector \mathbb{Y}, measured in watts per square meter (W/m²);

Poynting Vector:
$$\vec{S}(\omega t) = \vec{E}(\omega t) \times \vec{H}(\omega t)$$

$$= \Re\left\{\underline{\vec{E}}\,\mathrm{e}^{\,j\omega t}\right\} \times \Re\left\{\underline{\vec{H}}\,\mathrm{e}^{\,j\omega t}\right\}$$

$$= \frac{1}{2} \left(\underline{\vec{E}} e^{j\omega t} + \underline{\vec{E}}^* e^{-j\omega t} \right) \times \frac{1}{2} \left(\underline{\vec{H}} e^{j\omega t} + \underline{\vec{H}}^* e^{-j\omega t} \right)$$

$$= \frac{1}{4} \left(\underline{\vec{E}} \times \underline{\vec{H}}^* + \underline{\vec{E}}^* \times \underline{\vec{H}} + \underline{\vec{E}} \times \underline{\vec{H}} e^{j2\omega t} + \underline{\vec{E}}^* \times \underline{\vec{H}}^* e^{-j2\omega t} \right)$$

$$= \frac{1}{4} \left(\underline{\vec{E}} \times \underline{\vec{H}}^* + \left(\underline{\vec{E}} \times \underline{\vec{H}}^* \right)^* + \underline{\vec{E}} \times \underline{\vec{H}} e^{j2\omega t} + \left(\underline{\vec{E}} \times \underline{\vec{H}} e^{j2\omega t} \right)^* \right)$$

$$= \frac{1}{2}\Re\left\{\underline{\vec{E}}\times\underline{\vec{H}}^*\right\} + \frac{1}{2}\Re\left\{\underline{\vec{E}}\times\underline{\vec{H}}\,\mathrm{e}^{\,j2\omega t}\right\}$$

$$\vec{S}(t) = \frac{1}{2}\Re\left\{\underline{\vec{E}}\times\underline{\vec{H}}^*\right\} + \frac{1}{2}\Re\left\{\underline{\vec{E}}\times\underline{\vec{H}}\,\mathrm{e}^{\,j2\omega t}\right\}$$

Complex Poynting Vector:

$$\underline{\vec{S}} = \frac{1}{2} \; \underline{\vec{E}} \times \underline{\vec{H}}^*$$

The real part of \vec{S} equals the mean active power flow density!!

$$\overline{\vec{S}} = \Re{\{\underline{\vec{S}}\}}$$

Asking for the average over time of the power flow density, we see from eq. (3.59) that only the first term contributes because the first term is not time-dependent whereas the second term is a mean-free AC field varying with angular frequency of 2ω . The Poynting vector averaged over one time period T ($T = \frac{2\pi}{\omega}$) is therefore:

$$T = \frac{2\pi}{\omega} \text{) is therefore:}$$

$$\overline{S} = \frac{1}{T} \int_{0}^{T} \vec{S}(t) dt = \frac{1}{2} \Re \left\{ \underline{\vec{E}} \times \underline{\vec{H}}^{*} \right\}$$

$$1/2 \operatorname{Rel} + \operatorname{Img}$$

Please note:
$$\vec{S}(\omega t) \neq \Re{\{\vec{\underline{S}} \cdot e^{j\omega t}\}}$$

instead:

$$\vec{S}(\omega t) = \vec{E}(\omega t) \times \vec{H}(\omega t)$$

$$= \frac{1}{2} \Re \left\{ \vec{\underline{E}} \times \vec{\underline{H}}^* \right\} + \frac{1}{2} \Re \left\{ \vec{\underline{E}} \times \vec{\underline{H}} e^{j2\omega t} \right\}$$

and:
$$\underline{\vec{S}} = \frac{1}{2} \; \underline{\vec{E}} \times \underline{\vec{H}}^*$$

In free space
$$H = 0.2 \cos(\omega t - \theta u)$$
e. A/m. Find the total new

In free space, $\mathbf{H} = 0.2 \cos(\omega t - \beta x) \mathbf{a}_z$ A/m. Find the total power passing through:

- (a) A square plate of side 10 cm on plane x + y = 1
- (b) A circular disk of radius 5 cm on plane x = 1.

$$P(z,t) = \frac{1}{2} \eta \times H_0^{2} \hat{\alpha}_{z}$$

$$P(z,t) = \frac{1}{2} \eta \times H_0^{2} \hat{\alpha}_{z}$$

$$P_{\text{ong}} = \int P(t,t) ds$$

$$= P(2,t) \times 5 \times d\hat{n}$$

$$= V_{\text{ong}} = V_{\text{ong}} \times V_{\text{ong}} = V_{\text{ong}} \times V_{\text{ong}} \times V_{\text{ong}} = V_{\text{ong}} \times V_{\text{ong}} \times V_{\text{ong}} \times V_{\text{ong}} = V_{\text{ong}} \times V_{\text{ong}} \times V_{\text{ong}} \times V_{\text{ong}} = V_{\text{ong}} \times V_{\text{ong}} \times V_{\text{ong}} \times V_{\text{ong}} \times V_{\text{ong}} = V_{\text{ong}} \times V_{\text{ong}} \times V_{\text{ong}} \times V_{\text{ong}} \times V_{\text{ong}} = V_{\text{ong}} \times V_{$$

$$\frac{1}{2} \times 120 \times \times 0.2 \times (10 \times 10^{-2})^{1} \times \frac{1}{2} \times 120 \times 10^{-3} \times 10^{-3} \times 10^{-2} \times 10^{-3} \times 10^$$

PRACTICE EXERCISE 10.8

In free space, $\mathbf{H} = 0.2 \cos(\omega t - \beta x) \mathbf{a}_z$ A/m. Find the total power passing through:

- (a) A square plate of side 10 cm on plane x + y = 1
- (b) A circular disk of radius 5 cm on plane x = 1.

(b)
$$Pavg = \frac{1}{2}x\eta xH_0^{2}x + x(5x10^{-2})^{2}x \frac{1}{2}$$

= 59.22mw

$$\mathbf{E}(z,t) = E_{o}e^{-\alpha z}\cos(\omega t - \beta z)\mathbf{a}_{x}$$

$$\mathbf{H}(z,t) = \frac{E_{o}}{|\eta|} e^{-\alpha z} \cos(\omega t - \beta z - \theta_{\eta}) \mathbf{a}_{y}$$

$$\mathcal{P}(z,t) = \frac{E_o^2}{|\eta|} e^{-2\alpha z} \cos(\omega t - \beta z) \cos(\omega t - \beta z - \theta_\eta) \mathbf{a}_z$$
$$= \frac{E_o^2}{2|\eta|} e^{-2\alpha z} [\cos \theta_\eta + \cos(2\omega t - 2\beta z - \theta_\eta)] \mathbf{a}_z$$