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2.3 Problem 3

The vector field
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F=| byz
x

is given in Cartesian coordinates with the constants a and b.

a) Determine the divergence of the vector field F.

///divﬁdV: #F.dfi’
\%4 A

b) Verify Gauss' theorem

for a cube which fills the space between the points (0,0,0) and (1,1,1).
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2.3 Problem 3

The vector field
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is given in Cartesian coordinates with the constants a and b.

a) Determine the divergence of the vector field F.
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b) Verify Gauss' theorem

for a cube which fills the space between the points (0,0,0) and (1,1,1).
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Previous Day’s Equations

TABLE 9.1 Generalized Forms of Maxwell’s Equations

Differential Form Integral Form Remarks

V-D = p, Gauss’s law

%D-ds=fp,dv
S v

V:-B=0 Nonexistence of isolated magnetic charge*
B-dS=0
s
B Faraday’s law
VXE=— %E-d1=—ifB-dS y
dt L at I
dD oD Ampére’s circuit law
VXH=]+ — H'dlzf J+—)-ds P
ot . S ot

*This is also referred to as Gauss’s law for magnetic fields.
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Continuity Equation

Continuity Equation: When a fluid is in
motion, it must move in such a way that

>
_Z

mass is conserved.

Correponds to
Mirchhoff’s Current Law
(KCL):

From the principle of charge conservation, the time rate of decrease of charge within a
given volume must be equal to the net outward current flow through the surface of the
volume. Thus current I, coming out of the closed surface is

e ’@"3 §J-ds=_in“ (5.40)
K S - dt v .

where Q,, is the total charge enclosed by th¢ closed surface. Invoking the divergence
theorem, we write

f]’dS=JV-]dv (5.41)
\@ S v
But
_inn _ _ij — _J Ipy
A va dv = ot dv (5.42)
— d

Substituting eqs. (5.41) and (5.42) into eq. (5.40) gives
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Ampere’s Law
Ampere's circuital law relates

the integrated magnetic field »
around a closed loop is U,
proportionate to the electric
current passing through the

loop.
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Maxwell’s Fourth Equation (Toughest One

4’&

But the divergence of the curl of any vector field is identically zero (see Example 3.10).

VXH=] (9.17)

Hence, m
V-(VXH)=0=V-] (9.18)
_—————— 7——'
The continuity of current in eq. (5.43), however, requires that @
apy
V.]=_62¢0 w (9.19)

Thus eqs. (9.18) and (9.19) are obviously incompatible for time-varying conditions. We
must modify eq. (9.17) to agree with eq. (9.19). To do this, we add a term to eq. (9.17) so
that it becomes

VXH=]+],
7~

where ], is to be determined and defined. Again, the divergence of the curl of any vector
is zero. Hence:

(9.20)

that is defined in terms of the rate of change of D, the electric displacement field.

where J; is to be determined and defined. Again, the divergence of the curl of any vector
is zero. Hence:

V. (VXH) =0=V:-J+ V-], (9.21)
In order for eq. (9.21) to agree with eq. (9.19),
\5¥
gm0 AT D
V-j,=-V-J= at_at(V.D)_V Py (9.22a)
) OV 7 v
or
- . - (& E)
_9D _—
| it ol L (9.22b)
Substituting eq. (9.22b) into eq. (9.20) results in
oD
VXH=I+¥ (9.23)
w

This is Maxwell’s equation (based on Amperes circuit law) for a time-vjrying field. The
term J; = dD/at is known as displacement current density and J is the cgnduction current




PRACTICE EXERCISE 9.4

/m. Calculate

In free space, E = 20 cos(wt — 50x @
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3.1 Problem 1

Use Gauss' and Stokes’ theorems to transform the Maxwell equations from differential to i

notation.
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3.2 Problem 2
Y
According to Faraday’s law of electromagnetic induction, a time vary- a
a et £ = -8

ing magnetic flux v, penetrating a loop induces an electromotive
force (emf) noted as voltage v(t) such that \]L)e)

d m
W(t) = —% (32.1)

a) Give Faraday's law in point form.

Figure 3.2.1 /0/) 1)({} o i ;Izym

b) Express eq. (3.2.1) in integral form, in terms of E and B fields.

c) Determine the polarities of terminals a and b in the loop shown in Fig. 3.2.1. The B field

8 o d
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Dl Problem 2

According to Faraday's law of electromagnetic induction, a time vary-

B(decreasing)
-~
a

ing magnetic flux 1, penetrating a loop induces an electromotive

force (emf) noted as voltage v(t) such that

d"/}nz
dt

v(t) = —

a) Give Faraday's law in point form.

b

(32.1)
/V Figure 3.2.1

b) Express eq. (3.2.1) in integral form, in terms of E and B fields.

c) Determine the polarities of terminals a and b in the loop shown in Fig. 3.2.1. The B field

shall be continuously decreasing over time.
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Power out
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Stored electrical
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FIGURE 10.11 Illustration of power
balance for EM fields.
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Poynting Theorem

Poynting’s theorem states that
the net power flowing out of a
given volume v 1s equal to the
time rate of decrease in the
energy stored within v minus
the ohmic losses.

1

Power in ; ? .

1~
&
0 1 « 1
% (E X H)-dS =&J [—EEZ + MHZ]; = J o E*dv Pk
S at) |2 2 )
" " \
total power rate of decrease in ohmic power D
leaving the volume = energy stored in electric — dissipated ‘? "

and magnetic fields



Maxwell’s Equations e

Poynting’s Theorem: HF
Power dissipation into heat
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Complex Numbers and Conjugate Complex HF
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Maxwell’s Equations

Poynting’'s Theorem:
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Poynting vector'¥, measured in watts per square meter (W/m?)

Poynting vector S
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Maxwell’s Equations

D
<LO‘OAX

R

Poynting Vector: §(wt) — E(wt) > ﬁ(wt) P @ ¢ @X




Maxwell’s Equations S(t)

Complex Poynting Vector:
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Maxwell’s Equations

— — ~ .
Please note: S(wt} # %{ﬁ ,/ejwt}

instead:




PRACTICE EXERCISE 10.8 \ ,:(,,vf\*‘* g ’\oa —V\ R E(z 1) {E)_* cos(wt — P)a,
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PRACTICE EXERCISE 10.8

In free space, H = 0.2 cos(wt — Bx)a, A/m. Find the total power passing through:

(a) A square plate of side 10 cm on plane x + y = 1
(b) A circular disk of radius 5 cm on plane x = 1.
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E(z,t) = E,e"“* cos(wt — Bz)a,
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