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Mathematical Problems, Maxwell’s Equations, Continuity
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2.1 Problem 1

A bee sits on a lamp located at the point (2m,1m,4m) in a room. Th erature in the room is
given by 6 o
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where a, b, and c are constants. In which direction should the bee fly in order to reach a colder region
in the room as fast as possible? /
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2.2 Problem 2

Two vectors

are given.

a) Determine the area of a parallelogram spanned by @ and b.

b) Determine the angle between @ and b.
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2.4

A vector field F =

Problem 4

br — 3y — 2

T+ 2y+az
4x + cy + 2z

termine the constants a,b and ¢, such that the vector field F igcurl-free,

is given in Cartesian coordinate system with the constants

GXF-0

) Using the constants from a), show that the vector field F' is a gradient function jof a scalar
field p(z,y, 2).
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2.4 Problem 4 773’@ <'22 3 >

hzr - a 122
. T+ 2y+az
A vector field F br — 3y — = is given in Cartesian coordinate system with the constants 't‘
4z + cy + 22 Let's oguhume,
a,b,c € N. -
, A F = nacf¢(’(’a/2)
a)/Determine the constants a, b arlcic/SlJch4hat the vector field F' is curl-free.
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2.5 Problem 5

a) Express the function ® = % in spherical and in Cartesian coordinates. A is constant. Compute

V® in spherical and in Cartesian coordinates.

b) Determine the divergence of the vector field G with G(r,9, ) = ar®€, + br sin9€y +9¢, (a
and b are constants) in spherical coordinates.

c) Express the unit vectors €, €, and €, of a Cartesian coordinate system in spherical coordinates
r,¥, . Hint: Use the gradient operator.
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2.5  Problem 5 22— e . o
O dive - T &
a) Express the function ® = I"I in spherical and in Cartesian coordinates. A is constant. Compute
V® in spherical and in Cartesian coordinates. L’PM cal 9 | a K[ \ D (/) Y
— — U 'n Y )
b) Determine the divergence of the vector field G with G(r, ¥, @) r + br sinvey +ve, (a = o, ——f——a o ( -G'LI'L) - Y()S._Ji " 20 /O
and b are constants) in spherical coordinates. e Yo /"_/’- O
c) Express the unit vectors €, €, and €, of a Cartesian coordinate system in spherical coordinates \
r, ¥, . Hint: Use the gradient operator. /P + - (& )
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o = . Py +2? P 2.5 Problem 5

a) Express the function ® = % in spherical and in Cartesian coordinates. A is constant. Compute

V® in spherical and in Cartesian coordinates.
_ e 9 \.})\ﬂ\ o =
% = Y9 Cos 4) Sin ofl— Y’/\ b) Determine the divergence of the vector field G with G(r, 9, ¢) = ar3€, + br sindéy + ¢, (a
= and b are constants) in spherical coordinates.
’ L4
\& = Yo (P =@ - ¢, €,and €, of a Cartesian coordinate system in spherical coordinates
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Thumb Rules

Fleming’s Right Hand Thumb Rule Fleming’s Left Hand Thumb Rule Thumb Rule for Magnetic Field



Maxwell’s Equations

k
A Electrodynamic Force (Lorentz Force) :
— — . —
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Coulomb Force Magnetic Force
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Stoke’s Theorem

Stokes’s theorem states that the circulation of a vector field A around a (closed) path
L is equal to the surface integral of the curl of A over the open surface S bounded by L
(see Figure 3.21), provided A and V X A are continuous on S.

FIGURE 3.21 Determining the sense of
dl and dS involved in Stokes’s theorem.
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Also, from the definition of the curl of A in eq. (3.45), we may expect that
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jﬁA-d1=J(V><A)-ds (3.57)
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Divergence Theorem

The divergence theorem states that the total outward flux of a vector field A through
the closed surface S is the same as the volume integral of the divergence of A.
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@{ FIGURE 3.17 Volume v enclosed by surface S.
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Maxwell’s First/zw
Equation

Gauss’s law states that the total
electric flux through any cl
surface is equal to the total charge
enclosed by that surface.

Scalar electric flux (y)

They are the imaginary lines of force
radiating in outward direction

A charge can be source or sink
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Y= % av = § D - dS
S

= total charge enclosed Q = f p, dv
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Comparing the two volume integrals in eqs. (4.41) and (4.42) results in

p=V-D_f </‘®; )
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Maxwell’s Second
Equation %ﬁ

Scalar magnetic flux (¢)

They are the circular magnetic field generated around
a current carrying conductor.

No source/sink

ﬁids — ?—e_‘,pclosed —=(1)
gB.ds =0 ——(2)
- ant //
=46 B.ds = f/fv.édv ——=(3)

[V Bdv = 0 ——(4)
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Maxwell’s Third (5&" V= ——

Equation - A dt
Faraday discovered that d

the indﬁced emf, V(emf b Veme = ilj' a1 = dt J s B dj
in volts) in any closed

circuit 1s equal to the time Applyifig Stoke’s Theorem,

rate of change of the

magnetic flux linkage by J (VX E)-dS = _J@ s
the circuit. s s\
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