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Antennas

An antenna is a device for transmitting or
receiving electromagnetic waves.
An antenna transforms an electromagnetically guided
wave (for example, guided by a coaxial line, a planar
microstrip line, or a waveguide) into an electromagnetic
wave in free space and vice versa. The first is a
transmitting antenna and the latter is a receiving antenna.
The antenna dimensions may range from a portion of a
wavelength (e.g., a short dipole) up to several thousands
of wavelengths (e.g., a radio telescope).

Depending on the antenna geometry, the antenna may
focus the radiated power into specific spatial directions;
this is described by the antenna’s directivity and gain.




Antennas

The most important characteristics of an antenna are:
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ne three-dimensional antenna radiation characteristic
ne antenna gain over frequency

ne center frequency of operation

ne frequency bandwidth

ne mechanical dimensions (WxHxD)

ne polarization (linear, circular, elliptical polarization)

ne input impedance



Antennas
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Antennas
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With Maxwell’s fourth equation
dvB=0_,, (5.1)
we can describe the magnetic flux density B as a curl field of a vector potential A, N rgFo‘{?Y\’Hw{
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because the divergence of a curl field always vanishes (a curl field cannot have sources), div curl A=
0 (see eq. (2.39)).

Magnetic vector potential, A, 1s the vector quantity 1n classical
electromagnetism defined so that its curl is equal to the magnetic field-
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We also know from chapter 2, eq. (2.40), that the curl field of the gradient of a scalar field must
always be zero, curlgrad ® = 0 (a gradient field cannot have curls). With that, we introduce the

scalar potential ?
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¢ Electric Scalar potential, simply stated, describes the situation where the difference in
the potential energies of an object in two different positions depends only on the positions,

not upon the path taken by the object in traveling from one position to the other.



. Let’s Find the Differential Equation Using Retarded Potentials!
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We also have to satisfy Maxwell’s first equation

Now, for the curls of B we get:
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and with the general relation (see eq. (2.38))

A~~~ curl curl A = grad divA — AA

we finally obtain the differential equation
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Lorenz Gauge comes to Rescue d (d_ i M,) o,
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To further simplify these equations, we consider the sources of A (i.e., div /_1’) Only if we know
both the curls and the sources of a vector field is this vector field completely defined.
B = curl4 Jis not unambiguous, because also an
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curlgrad ¥ = 0

and
curl A = curl (/—f—i— grad \I!) = curl A + curl grad ¥ = curlA =B

This allows us to freely choose the sources of A and to do this in an advantageous manner.
Therefore, we choose the sources of A as

divA = —pue %—f (Lorenz gauge) (5.11)




Retarded Potentials (Two Decoupled Equation)
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Retarded Potentials
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Volume V with sources J(P',t) and o(P’,t) Q _ %
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. . \' .
clectromagnetic potentials for the electromagnetic field generated
by time-varying electric current or charge distributions in the past.



Retarded Potentials in Complex Notation
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Retarded Potentials (Complex Notation)

Volume V with sources J(P’,t) and o(P’,t)
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Final Take is :

- Then the potentials in complex notation read ®
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i(t)=1I cos(wt)

¢ The Hertzian dipole is a theoretical dipole antenna that consists of an

infinitesimally small current source acting in free-space. Although a

_true Hertzian dipole cannot physically exist, very short dipole antennas can
make for a reasonable approximation.




2.6 Spherical Coordinate System




The Hertzian Dipole

Cartesian unity vectors in spherical coordinates:
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The Hertzian Dipole

Volume V with sources J(P',t) and o(P',t)
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The dipole is oriented in the z-direction with a small height A (h < A) and a current magnitude
I. The current varies harmonically which allows us to use complex notation. The current density
multiplied by an infinitesimal volume element reads

Jdv = Ldzé. (5.21)
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Because the dipole is placed at the origin and it is very small, the distance between the source
point P’ and an arbitrary point P is
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The Hertzian Dipole
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we can see that the curl A and therefore the magnetic field H can only have a ¢p-component,
H=H,¢, (5.27)
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_ -~ The Hertzian Dipole
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The Hertzian Dipole
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The Hertzian Dipole (Near Field Components)
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The Hertzian Dipole (Far Field Components)
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The Hertzian Dipole

Far Field: a spherical TEM Wave
E 1 H

\/E = Zp = 377€) in free space




Antenna Pattern of the Hertzian Dipole
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FIGURE 13.7 Field patterns of the Hertzian dipole: (a) normalized
E-plane or vertical pattern (¢ = constant = 0), (b) normalized H-plane
or horizontal pattern (6 = m/2), (c) three-dimensional pattern.

FIGURE 13.8 Power patterns of the Hertzian dipole: (a) (¢ = constant = 0),
(b) 6 = constant = /2.

An antenna pattern (or radiation patten) is a three dimensional plot of its
radiation at far field. When the amplitude of a specified component of the E field
1s plotted, it is called the field pattern or voltage pattern. When the square of
the amplitude of E is plotted, it is called the power pattern.




Radiation Characteristic of the Hertzian Dipole
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An antenna pattern (or radiation patten) is a three dimensional
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plot of its radiation at far field.



Radiation Characteristic of the Hertzian Dipole

like a donut ..
(but without the hole in the center)




Electric Field of the Hertzian Dipole
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Electric Field of the Hertzian Dipole
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Electric Field of the Hertzian Dipole
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Electric Field of the Hertzian Dipole
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Electric Field of the Hertzian Dipole
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Electric Field of the Hertzian Dipole
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Electric Field of the Hertzian Dipole
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Hertzian Dipole Radiation

x-Richtung

Source: http://www.hs-weingarten.de/~kark/Forschung/index.htm




5.1 Problem 1

If only the far field is of interest, the curl operator

can be simplified because of the known radial dependence of all field components.

ive the general radial dependence of all field components in a far field distance.
”

b) What terms in the equation above are the dominant terms?
Show how the curl operator can be simplified if the point of observation is in a far field

distance.

c) With the above simplification, give all electric and magnetic field components in a far field

distance.
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5.1 Problem 1

If only the far field is of interest, the curl operator

can be simplified because of the known radial dependence of all field components.

Give the general radial dependence of all field components in a far field distance.
b) What terms in the equation above are the dominant terms?
Show how the curl operator can be s |mEI|f ted It the point of observation is in fleld
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distance.

c) With the above simplification, give all electric and magnetic field components in a far field
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5.1 Problem 1

If only the far field is of interest, the curl operator
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curl

can be simplified because of the known radial dependence of all field components.

a) Give the general radial dependence of all field components in a far field distance.

b) What terms in the equation above are the dominant terms?
Show how the curl operator can be simplified if the point of observation is in a far field
distance.

ith the above simplification, give all electric and magnetic field components in a far field
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5.2

Problem 2

A Hertzian dipole with a current magnitude [ is oriented irection.

etermine the magnetic vector potential A.
e G —

b) Determine the magnetic vector field H in a far field distance.

c) Determine the electric vector field E in a far field distance.

d) Give the radiation characteristic in a far field distance and sketch it in all three main planes.
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5.2 Problem 2

A Hertzian dipole with a current magnitude [ is oriented in x-direction.

a) Determine the magnetic vector potential A.

etermine the magnetic vector field H in a far field distance.

etermine the electric vector field E in a far field distance.

d) Give the radiation characteristic in a far field distance and sketch it in all three main planes.
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5.2 Problem 2

A Hertzian dipole with a current magnitude I is oriented in x-direction.

a) Determine the magnetic vector potential A
b) Determine the magnetic vector field H in a far field distance.

c) Determine the electric vector field E in a far field distance.

@ ive the radiation characteristic in a far field distance and sketch it in all three main planes.
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5.3 Problem 3

A dipole is put into the origin of a Cartesian coordinate system. The dipole has a height / and carries
a harmonically varying electric current of amplitude I. The frequency is f = 1 GHz and the so-called
current moment /_7~h is I-h =T1Am.

—

o

The orientation of the dipole is7i= [ 0 ) W

A second dipole (of same dimensions) is used as a receive antenna. It is placed on the z-axis in a
far-field distance of r = 100 m.

What is the polarization of the transmitted wave?

—_—

/ .
Calculate the electric and magnetic field strengths’ amplitudes at the position of the receive
antenna.
c) Calculate the mean power flow density at the position of the receive antenna.
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5.3  Problem 3 H@ E
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A dipole is put into the origin of a Cartesian coordinate system. The dipole has a height / and carries
a harmonically varying electric current of amplitude I. The frequency is f = 1 GHz and the so-called
current moment [ -his I-h = 1Am.

The orientation of the dipole is7i= | 0 .
0

A second dipole (of same dimensions) is used as a receive antenna. It is placed on the z-axis in a

far-field distance of 7 = 100 m.

a) What is the polarization of the transmitted wave?

b) Calculate the electric and magnetic field strengths’ amplitudes at the position of the receive
antenna.

c) Yalculate the mean power flow density at the position of the receive antenna.
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5.3 Problem 3

A dipole is put into the origin of a Cartesian coordinate system. The dipole has a height / and carries
a harmonically varying electric current of amplitude I. The frequency is f = 1 GHz and the so-called

current moment [-his I-h = 1Am.
1

The orientation of the dipole is i = | 0

0
A second dipole (of same dimensions) is used as a receive antenna. It is placed on the z-axis in a
far-field distance of = 100 m.

a) What is the polarization of the transmitted wave?

b) Calculate the electric and magnetic field strengths’ amplitudes at the position of the receive
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antenna.
c) Calculate the mean power flow density at the position of the receive antenna.
I 0
100 m J n=|0 100 m n=|1
0

2l

receiver

transmitter receiver transmitter

=3
I
o

100 m 100 m

|

&

receiver -

receiver

transmitter transmitter

(c) Orientation of the receive antenna is €~ (d) Orientation of the receive antenna is %z_

Figs. a) to d) show different possible orientations of the receive antenna.

( d) )Regarding the received power, what is the optimal orientation of the receive antenna?

—

How much power is received by the other three combinations compared to the optimal one of
task d)?
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